Programmed ascospore death in the homothallic ascomycete Coniochaeta tetraspora.
نویسندگان
چکیده
Immature asci of Coniochaeta tetraspora originally contain eight uninucleate ascospores. Two ascospore pairs in each ascus survive and mature, and two die and degenerate. Arrangement of the two ascospore types in individual linear asci is what would be expected if death is controlled by a chromosomal gene segregating at the second meiotic division in about 50% of asci. Cultures originating from single homokaryotic ascospores or from single uninucleate conidia are self-fertile, again producing eight-spored asci in which four spores disintegrate, generation after generation. These observations indicate that differentiation of two nuclear types occurs de novo in each sexual generation, that it involves alteration of a specific chromosome locus, and that the change occurs early in the sexual phase. One, and only one, of the two haploid nuclei entering each functional zygote must carry the altered element, which is segregated into two of the four meiotic products and is eliminated when ascospores that contain it disintegrate. Fusion of nuclei cannot be random-a recognition mechanism must exist. More study will be needed to determine whether the change that is responsible for ascospore death is genetic or epigenetic, whether it occurs just before the formation of each ascus or originates only once in the ascogonium prior to proliferation of ascogenous hyphae, and whether it reflects developmentally triggered alteration at a locus other than mating type or the activation of a silent mating-type gene that has pleiotropic effects. Similar considerations apply to species such as Sclerotinia trifoliorum and Chromocrea spinulosa, in which all ascospores survive but half the spores in each ascus are small and self-sterile. Unlike C. tetraspora, another four-spored species, Coniochaetidium savoryi, is pseudohomothallic, with ascus development resembling that of Podospora anserina.
منابع مشابه
Pheromones and pheromone receptors are required for proper sexual development in the homothallic ascomycete Sordaria macrospora.
The homothallic, filamentous ascomycete Sordaria macrospora is self-fertile and produces sexual fruiting bodies (perithecia) without a mating partner. Even so, S. macrospora transcriptionally expresses two pheromone-precursor genes (ppg1 and ppg2) and two pheromone-receptor genes (pre1 and pre2). The proteins encoded by these genes are similar to alpha-factor-like and a-factor-like pheromones a...
متن کاملIntracellular siderophores are essential for ascomycete sexual development in heterothallic Cochliobolus heterostrophus and homothallic Gibberella zeae.
Connections between fungal development and secondary metabolism have been reported previously, but as yet, no comprehensive analysis of a family of secondary metabolites and their possible role in fungal development has been reported. In the present study, mutant strains of the heterothallic ascomycete Cochliobolus heterostrophus, each lacking one of 12 genes (NPS1 to NPS12) encoding a nonribos...
متن کاملA STE12 homologue of the homothallic ascomycete Sordaria macrospora interacts with the MADS box protein MCM1 and is required for ascosporogenesis.
The MADS box protein MCM1 controls diverse developmental processes and is essential for fruiting body formation in the homothallic ascomycete Sordaria macrospora. MADS box proteins derive their regulatory specificity from a wide range of different protein interactions. We have recently shown that the S. macrospora MCM1 is able to interact with the alpha-domain mating-type protein SMTA-1. To fur...
متن کاملIsolation and Characterization of Sexual Spore Pigments from Aspergillus nidulans.
The homothallic ascomycete Aspergillus nidulans produces two types of pigmented spores: conidia and ascospores. The synthesis and localization of the spore pigments is developmentally regulated and occurs in specialized cell types. On the basis of spectroscopic evidence, we propose that the major ascospore pigment of A. nidulans (ascoquinone A) is a novel dimeric hydroxylated anthraquinone. The...
متن کاملDraft Genome Sequence of Coniochaeta ligniaria NRRL 30616, a Lignocellulolytic Fungus for Bioabatement of Inhibitors in Plant Biomass Hydrolysates
Here, we report the first draft genome sequence (42.38 Mb containing 13,657 genes) of Coniochaeta ligniaria NRRL 30616, an ascomycete with biotechnological relevance in the bioenergy field given its high potential for bioabatement of toxic furanic compounds in plant biomass hydrolysates and its capacity to degrade lignocellulosic material.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Fungal genetics and biology : FG & B
دوره 30 3 شماره
صفحات -
تاریخ انتشار 2000